

¹ Institute of Psychiatric Phenomics and Genomics, Medical Center of the University of Munich

² Dept. of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, ³ Dept. of Genomics and Institute of Human Genetics, University of Bonn

⁴ Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, ⁵ Dept. of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health Mannheim

⁶ Dept. of Biomedicine, University of Basel, ⁷ Dept. of Psychiatry, University of California, San Diego

INTRODUCTION

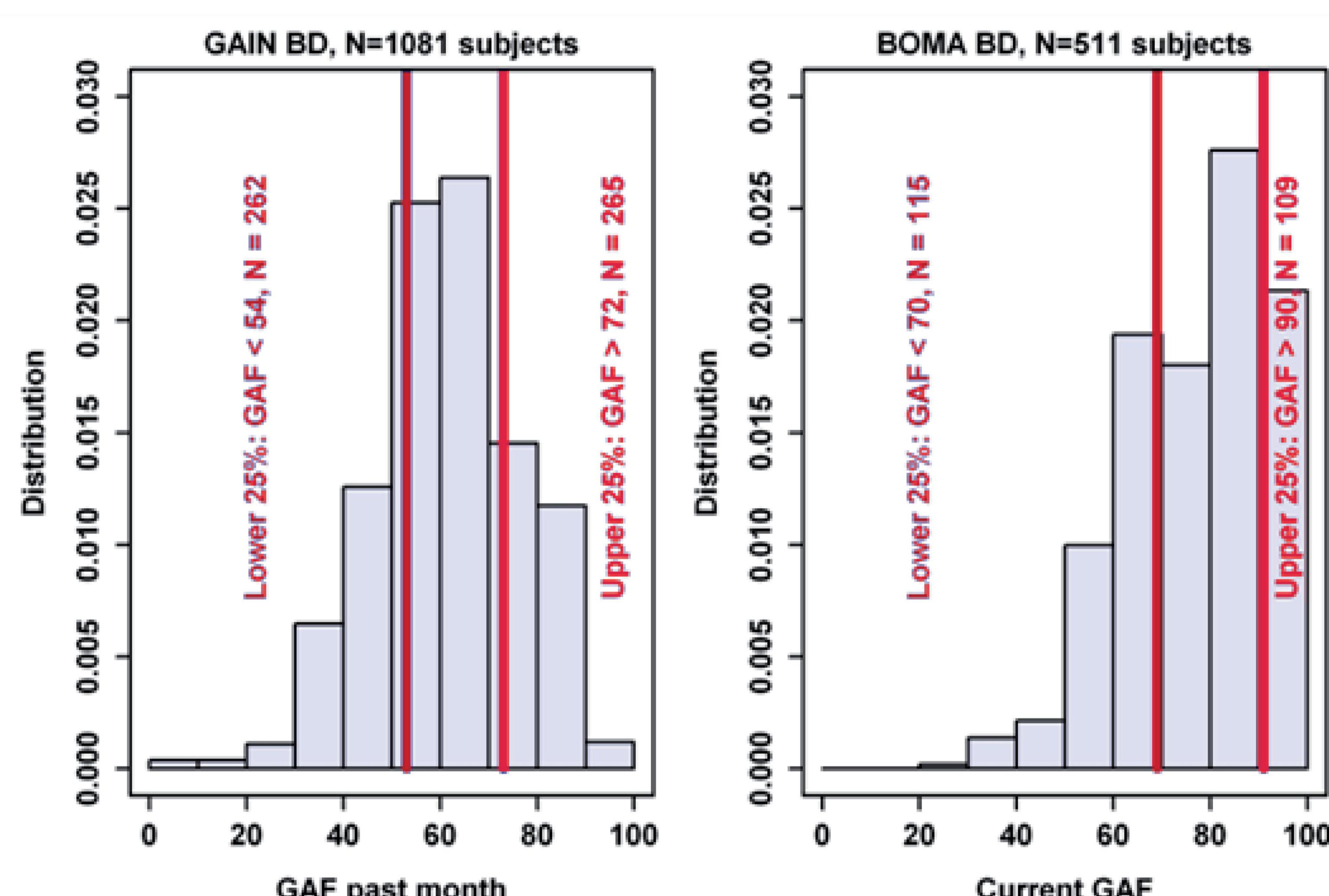
Despite large case-control genome-wide association studies during the last years - as in other complex disorders - the anticipated major breakthroughs in explaining the high heritability of bipolar disorder (BD) have remained elusive. Hence an alternative strategy is exploring quantitative rather than binary phenotypes. We studied the genetic basis of global functioning measured by the Global Assessment of Functioning (GAF) score. The GAF accounts for the social, occupational, and psychological functioning of a psychiatric patient and can be used as a comprehensive indicator for long-term functional outcome / course of illness. Hence this study fills a gap in the mainly cross-sectional research in psychiatric genetics.

Sample 1: GAIN BD	Sample 2: BOMA BD
<i>N</i> = 1,081 BD patients	<i>N</i> = 511 BD patients
DSM-IV diagnosis	DSM-IV diagnosis
European American	German
Affymetrix 6.0	Illumina HumanHap550v3 Illumina Human610 Illumina Human 660w
~2 541,685 SNPs	536,497 SNPs

410,943 SNPs*

*passed quality control in both samples (HWE \geq 10-5, MAF \geq 5%, call rate \geq 95%)

PHENOTYPE: GLOBAL LEVEL OF FUNCTIONING


→ measured by GAF score

The GAF score - described in DSM-IV-TR - is a numeric scale (0-100) that is used for rating the psychological, social and occupational functioning of adults.

GAF	Advantage	Disadvantage
I Metric GAF (quantitative)	full sample size	less contrast
II Contrast of GAF extremes (case-case scenario on subjects with GAF values in the upper & lower sample quartiles)	higher contrast	reduced sample size

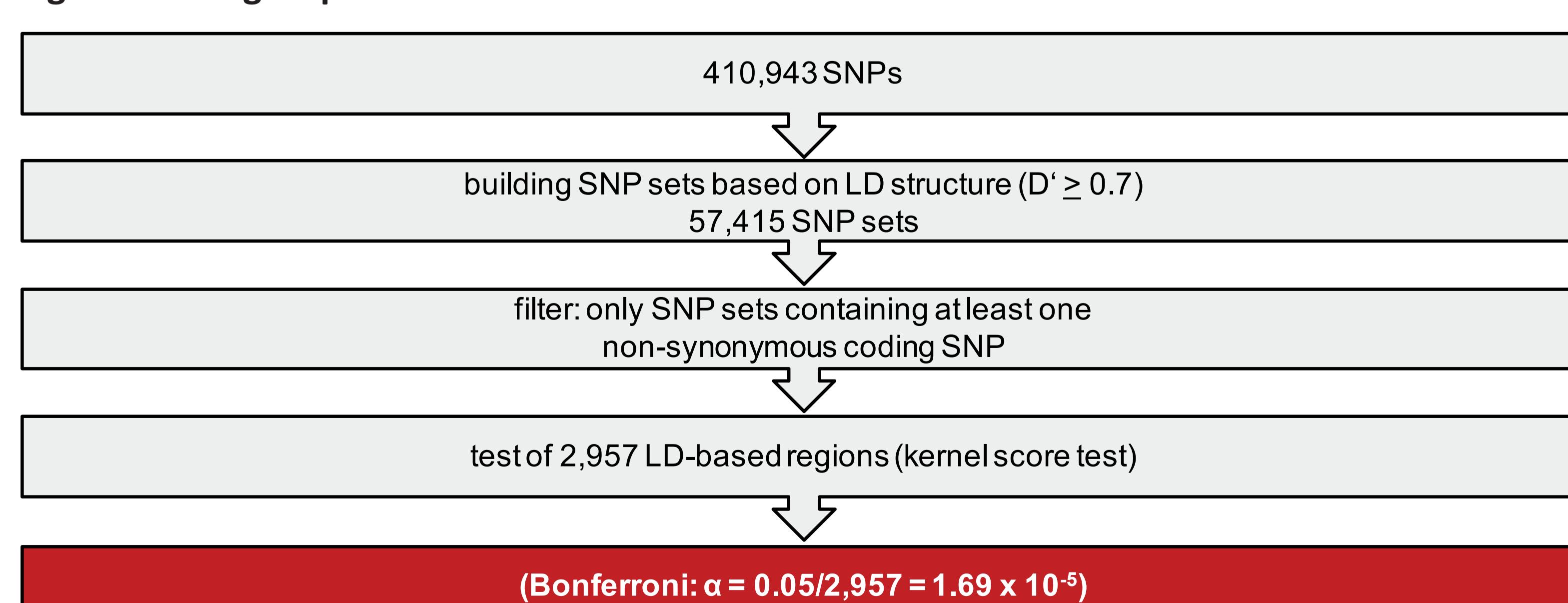

PHENOTYPE: INTEREPISODE GAF

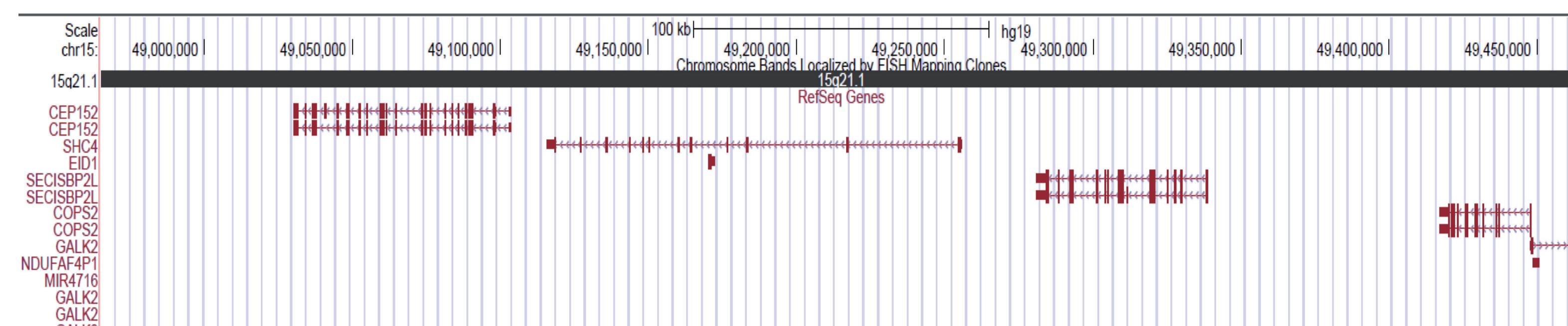
Fig. 1: Distributions of GAF score in our samples

ANALYSES

Fig. 2: Filtering steps

KERNEL SCORE TEST

(SKAT, review Schaid 2010 Hum Hered; Friedrichs et al., 2016 BMC Genet)


- test for overall association of a set of markers
- Do the overall scores of the SNP sets explain the variance in the GAF score?
- higher power in moderate samples compared to SNP-wise analyses
- significance only if direction of effect consistent across both samples
- tested for both phenotype definitions
- adjusted for sex, duration of illness and sample

RESULTS

Kernel score test

One LD block, located on chr15q21.1, was significantly associated with the GAF score (kernel score test: $p=1.29 \cdot 10^{-5}$ metric GAF; $p=5.64 \cdot 10^{-6}$ GAF-extremes).

Genes in LD block on chr15q21.1

Meta-analyses of two BD patient samples adjusted for sex and duration of illness

SNP	MAF	Effect on metric GAF Beta ^a	Meta-analysis p-value	Effect on GAF Extremes Odds Ratio ^b	Meta-Analysis p-value	Gene
rs4474633	GAIN: 0.33 BOMA: 0.32	GAIN: -1.60 BOMA: -3.72	4.39×10^{-5}	GAIN: 1.48 BOMA: 2.21	1.33×10^{-5}	intergenic SHC4 – SECISBP2L
rs2413930	GAIN: 0.29 BOMA: 0.23	GAIN: -1.99 BOMA: -4.13	1.46×10^{-5}	GAIN: 1.63 BOMA: 2.62	5.80×10^{-6}	SECISBP2L-COPS2
rs586758	GAIN: 0.30 BOMA: 0.29	GAIN: -1.84 BOMA: -3.81	2.49×10^{-5}	GAIN: 1.63 BOMA: 2.31	2.01×10^{-6}	GALK2
rs2086256	GAIN: 0.35 BOMA: 0.35	GAIN: -2.28 BOMA: -3.23	1.14×10^{-5}	GAIN: 1.62 BOMA: 2.06	4.64×10^{-6}	GALK2
rs1904317	GAIN: 0.30 BOMA: 0.29	GAIN: -1.84 BOMA: -3.79	2.49×10^{-5}	GAIN: 1.63 BOMA: 2.28	2.21×10^{-6}	GALK2
rs11854184 ^c	GAIN: 0.19 BOMA: 0.20	GAIN: 1.30 BOMA: 2.80	0.0132	GAIN: 0.75 BOMA: 0.56	0.0128	SECISBP2L

^a The effect on metric GAF is a regression coefficient beta. Positive values indicate a protective effect of the minor allele.

^b The contrast between upper and lower GAF quartile is an odds ratio. Values <1 indicate a protective effect.

^c non-synonymous coding SNP

DISCUSSION

Advantages		Disadvantages	
Novel phenotype GAF		heterogeneous phenotype (time intervals; domains) difficulty in finding comparable samples	
proxy for course of illness easy to assess clinically useful		Methodological issues applicable also to moderate sample sizes consistency check-up already included	
		refinement of filter criteria needed further replication studies necessary	

CONCLUSION

Our analysis of the GAF score in two BD samples found a consistently associated LD block on chromosome 15. This region will be examined more closely; including haplotype analysis and its relevance as potentially shared genetic factor in schizophrenia.

REFERENCES

Friedrichs S et al. Filtering genetic variants and placing informative priors based on putative biological function. *BMC Genet.* 2016; 3:17 Suppl 2:8.
Schaid DJ. Genomic similarity and kernel methods I: advancements by building on mathematical and statistical foundations. *Hum Hered.* 2010;70(2):109-31.

GRANTS

This work was supported by Deutsche Forschungsgemeinschaft (grant no. SCHU 1603/5-1 and SCHU 1603/7-1).

DISCLOSURE

The authors declare no conflict of interest.